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The effect of increasing disturbance size on the stability of a laminar streaming flow is 
considered theoretically a t  high Reynolds numbers Re. The theory has a rational 
basis that  allows detailed understanding of the delicate physical balances controlling 
stability, and is presented with an accelerating boundary layer taken as the basic 
flow. The theory predicts that the scales and properties required to produce the 
Rayleigh situation (where the disturbances have wave speed and wavelength com- 
parable to the typical speed and thickness respectively of the basic flow) in neutral 
stability are very different from those predicted by a classical approach, involving a 
relative disturbance size O(Re-4) rather than the classical suggestion O(Re-3). Before 
then, however, the disturbances undergo an abrupt alteration in scale and character 
as they pass through the just slightly smaller size O(Re-s'e), with the stability structure 
changing from the relatively large-scale form of linear theory to the more condensed 
Rayleigh form by means of a nonlinear interaction within the critical layer. Strong 
higher harmonics of the fundamental disturbance are induced throughout the flow field 
by the velocity jump across the critical layer, but the phase jump remains the most 
significant property. Sclutions for the nonlinear critical layer are recalculated and 
reanalysed. Also, the mean-flow correction produced by the nonlinear critical layer is 
shown to be smaller than the main part of the fundamental, owing to the regularity of 
the latter. As the Rayleigh stage is approached, the lateral variation of the induced 
pressure force through the critical layer begins to exert a considerable influence. 
Similar characteristics also arise in other fundamental streaming flows, and the implied 
Rayleigh stage is the subject of a subsequent investigation. 

1. Introduction 
Our intention is to further the self-consistent structured account of the nonlinear 

stability of boundary-layer flows in the limit of high Reynolds numbers, the only limit 
where the basic flow is truly of a boundary-layer form. This work is therefore in the 
same spirit as Smith's (1979b) study of the stability properties near the lower branch 
of the neutral curve at large Reynolds numbers. There, as the size of the disturbance is 
increased, the first fully nonlinear stage reached is governed by the three-zoned 
structure and scalings of the t'riple-deck, if the basic flow is a boundary layer. The same 
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structure also describes the linear parallel or non-parallel flow theory of Tollmien- 
Schlichting waves in fact, along the lower neutral branch (Smith 1979a; Hall & Smith 
1982; cf. Bouthier 1973; Gaster 1974). 

Here we consider the effects of increasing the size of the disturbance, relative t o  the 
inverse powers of the large Reynolds number, but along the upper branch of the 
neutral stability curve for a general accelerating planar boundary layer on a fixed wall. 
The main differences from the lower branch case arise from the well-known distinction 
of the critical layer and the viscous wall layer in the balance of forces controlling 
stability along the upper branch. The structure of this balance is set out briefly in $ 2 ,  
for the linear theory of an infinitesimal disturbance first. It is a five-zoned structure 
similar to that shown by Bodonyi & Smith (1981) to govern the upper branch parallel 
and non-parallel flow stability of the non-accelerating Blasius boundary layer. It 
provides the foundation for the subsequent study of nonlinear aspects necessarily 
induced as the disturbance size increases. For the linear structure continues to  dictate 
the neutral stability properties until the relative disturbance size, 6 say, rises to 
O(Re-3’s)) where Re denotes the global Reynolds number (see (1.1) below). Even a t  that  
stage, 6 = O(Re-a’i), the stability structure remains substantially unaltered (see $ 3) 
except that the critical layer close to the wall becomes influenced strongly by nonlinear 
interactions, higher harmonics of the fundamental disturbance appear significantly 
everywhere in the flow field and the wall layer becomes nearly nonlinear. The new 
critical-layer balance then corresponds to the proposals of Benney & Bergeron (1969), 
Davis (1969), Haberman (1972) and others, but subject to the modified boundary 
conditions revealed by Brown & Stewartson (1978). Despite the production of the 
higher harmonics everywhere, the concept of a phase shift across the nonlinear critical 
layer remains important, since the phase shift continues to control the neutral stability 
state in the nonlinear regime, and calculations of the nonlinear critical-layer problem 
are consistent with Haberman’s (1972) numerical results. As the disturbance size 
increases further within the O(Re-Si) stage, however, the neutral wavelength falls 
sharply and the frequency and wave speed rise as inviscid effects begin to dominate the 
critical-layer balance and a cat’s eye of uniform vorticity starts to form. The modifi- 
cations required of Haberman’s (1972) and Brown & Stewartson’s (1978) analyses of 
this process are described in 9 4. The present work puts the nonlinear critical-layer 
effect into context, explicitly determines the amplitude dependence of the neutral 
waves, the velocity jump across the critical layer, and the higher harmonics induced; 
it shows that the mean-flow correction is smaller than the fundamental disturbance, 
contrary to earlier suggestions, and it reaffirms the importance of the phase shift. It 
also gives a simpler method ( $  4) for determining the velocity jump in the inviscid limit. 
However, the main inference to be drawn is that  presented in $ 5 .  

There it is anticipated that a great change must take place in the stability structure 
when the disturbance size is increased just slightly, from O(Re-A) to O(Re-6). For then 
the critical layer moves out into the midst of the basic flow and the neutral wavelength 
becomes comparable with the characteristic lateral dimension of the basic flow. There- 
fore the classical inviscid Rayleigh situation is recovered, apparently. Yet just as that 
happens the nonlinear critical layer develops another new feature, involving the 
setting up of a significant lateral pressure gradient across the critical layer. I n  addition, 
the wall layer then becomes nonlinear. So i t  may be concluded that an entirely different 
balance of forces is provoked in the Rayleigh situation encountered as the stage 
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= O(Re-4) is reached. There is little doubt that the same conclusion holds also in 
other streaming flows such as the Blasius flow and plane Poiseuille flow, as the Rayleigh 
situation is reached with S of order Re-4, and there may be applications elsewhere as 
well, in stratified fluid flows for example (Kelly & Maslowe 1970; Maslowe 1972, 1977; 
Stewartson 1978; Brown & Stewartson 1978, 1980a). It seems worth remarking that 
the classical approach would tend to suggest that the Rayleigh situation is encountered 
when the disturbance size is only O(R-+), where R = Re4 is a local Reynolds number, 
in contrast with the above prediction of O(R-)). The anticipated Rayleigh situation 
will be studied by Smith & Bodonyi (1982), hereinafter referred to as part 2 .  

All the stability properties of importance below are sufficiently local that the wall 
may be taken to be flat, lying along the x-axis, say, wherex, yare Cartesian co-ordinates. 
The corresponding components of the tatal velocity field are written G, 3 and the 
pressure is jj. Here x, y, u, 3,F and the time t are non-dimensionalized with respect to 
1, I, u,, u,, put and luzl in turn, where p is the fluid density and I, u, respectively are 
characteristic streamwise length and velocity scales of the basic flow. To be specific 
we may take the constant u, to be the local free-stream speed just outside the boundary 
layer that is set up when the Reynolds number Re defined by 

Re = um1/v (1.1) 

is large. The fluid is supposed to be incompressible with kinematic viscosity v, and its 
unsteady motion is assumed to be two-dimensional. Extensions of the theory can be 
made, in principle a t  least, to include three-dimensionality for instance, to treat other 
basic flowswhich (like the accelerating boundary layer) are linearly destabilized only by 
the presence of viscosity, or to examine slow growth or decay of the disturbance 
amplitude instead of the neutral criteria to be established here. The establishment of 
the neutral criteria for the present case, and their dependence on disturbance size, is, 
however, regarded as a useful first step for the systematic theory. On the other hand 
the influence of initial conditions as pointed out by Stewartson (1978) seems to be 
a very important factor in the development of nonlinear critical layers and needs 
further consideration, despite the apparent agreement obtainable between stability 
theories which take no account of initial values and experiments or calculations aimed 
a t  following the flow response for a maintained disturbance of fixed frequency, say (see 
for example Caster 1974; Murdock 1977; Fasel, Bestek & Schefenacker 1977; Smith 
1979a, b). 

2. Linear-disturbance structure 
The springboard for the present paper and its sequel (part 3 )  is the solution structure, 

near the upper branch of the neutral stability curve when the Reynolds number Re is 
asymptotically large, for an infinitesimal disturbance to the basic streaming flow. 
Although the main properties of such a disturbance have been known for many years 
from classical linear-stability theory (Lin 1955, Stuart 1963, Reid 1965) their determi- 
nation has largely been carried out in a rather ad hoc fashion. By contrast a systematic 
treatment is much more illuminating of the delicate physical and mathematical 
balances controlling instability. The systematically based structure near the upper 
branch has not been fully recognized in the past, but has been set out recently by 
Bodonyi & Smith (1981) and Smith & Bodonyi (1980) for the Blasius boundary layer 
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and entry flow in a channel or pipe. The present study concentrates on the stability of 
general accelerating boundary layers. This is done to complement partly the earlier 
work just referred to by presenting the more general case, for a linear disturbance, but 
more especially to make use of the less involved balances governing the non-Blasius 
accelerating flow stability when we come to nonlinear aspects later. 

The substantial differences between the stability features of the accelerating and the 
Blasius boundary-layer flows stem from the presence of a favourable pressure gradient 
in the former flow. As a consequence the curvature of the basic velocity profile is now 
non-zero at  the wall, whereas for the Blasius flow (Bodonyi & Smith 1981) i t  is zero, and, 
since the curvature a t  the critical layer near the wall (see below) controls the stability 
properties, the associated scalings are now quite distinct from those holding in the 
Bodonyi & Smith (1981) study. The orders of magnitude which provide the clues to the 
scalings and disturbance structure could all be derived from the classical linear theory, 
however, just as in the Blasius case. The disturbance structure consists of five zones 
I-V governing the lateral variation of the solution, has streamwise length scale 
O(Re-l+), and is depicted in figure 1.  Zones I-V have thicknesses of the orders Re-:, 
Re-&, Re-%, Re-8 and Re-i’f respectively. So the lateral and streamwise extents of 
the structure are much greater than the boundary-layer thickness. Again, the physical 
characteristics of the five zones are analogous to those described for Blasius flow 
stability by Smith & Bodonyi (1980) and Bodonyi & Smith (1981). 

The equations to be addressed, in this section only, are the linearized Navier-Stokes 
equations 

for the infinitesimal disturbance Sq = S(u, v), Sp obtained by expanding the total 
velocity and pressure field in the form 

divq = 0, aq/a t+(Q.V)q+(q .V)Q = -Vp+Re-lV2q (2.1) 

[C, 3, $1 (x, y ,  t )  = [ U ,  v, PI (2, y )  + 81% @,$)I (x, y, t )  + O(S2), (2.2) 

and working to order S < 1 in the Navier-Stokes equations. The boundary conditions 
require no slip a t  the wall and boundedness of the disturbance in the far field. Since the 
steady basic flow Q = ( U ,  V ) ,  P has a boundary-layer character only when Re -+ m- a 
fact traditionally ignored in the ‘ parallel-flow approximation ’ of course (see Smith 
1979~1, b )  - a severe restriction is strictly necessary on the present disturbance size 6, 
namely 

S < Re-N for all N > 0, (2.3) 

in order that (2.1) may remain valid when the basic flow has its boundary-layer form, 
as in Smith (1979a, b) .  Lifting the restriction (2.3), to allow for bigger disturbances, 
leads to the nonlinear aspects examined in $0 3-5 below and in part 2. 

For Re B 1,  then, the basic flow takes the boundary-layer form 

V ( x ,  y )  = O(Re-i), U(x ,  Y) = ri,(x, Y ) +  ..., ( 2 . 4 ~ )  

say, where I’ = Re4 y is the boundary-layer co-ordinate. The accelerating boundary- 
layer profile Us(x, Y )  has the properties 

UB(x, CO) = 1, UB(x, Y )  N h(x) Y +h,(x) Y2+ ... as I.’ + 0, (2.4 b )  

where 2h,(x) = aP/ax(x, 0) < 0 relates the local favourable pressure gradient to the 
profile curvature h2(x) ,  and h(s )  > 0 gives the local skin friction. Since the variation 
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FIGURE 1. Sketch (not t o  scale) of the relatively large five-zoned structure of a travelling wave 
disturbance of amplitude S < O(Re-s%) in an accelerating boundary layer (see §§ 2, 3), with basic 
velocity profile UB(z, Y ) .  Here C.L. denotes the critical layer 111. 

of the disturbance in (2.1) occurs on the relatively short streamwise length scale of 
O(Re-i%) the variation of U, with x plays only a passive role, and x can be regarded as 
a parameter provided that, as below, only the first few leading terms of the disturbance 
solution are required (Bouthier 1972, 1973; Gaster 1974; Smith 1979a; Bodonyi & 
Smith 1981). 

Returning to the disturbance properties, for convenience we set E = Re-i’K. Then the 
streamwise and temporal variations of the disturbance depend mainly on X ,  7,  where 
x = e5X,  t = e47[see Reid 1965, equations (3.121), (3.123)], although a multiple-scales 
replacement of a/ax by E-5 a/aX + a/ax would be called for to treat the non-parallelism 
of the basic flow (Smith 1979a; Bodonyi & Smith 1981). In  the zones I ,  11, IV, V the 
disturbance develops in the forms 

... 
... 

Y = E ’ P ,  ( 2 . 5 ~ )  1 
E[u,, EV,, ep,] + + C.C. in I, where y = e6 I’, 
E[u@) + E U ( ~ ) ,  $do) + e3d1), ep(O) + ezp(l)] + 

EIGo, e3G0, EP,] + ... + C.C. in IV, where y = e82 ,  

+ c.e. in 11, where 

E[s&,,, &, E@,] + ... + C.C. in V, where y = 69, 

E = exp ( ~ ( E x - ~ T ) ) .  

i ( U , V , P )  = 

where C.C. denotes the appropriate complex conjugate and 

The reduced wavenumber B and frequency B are also to be expanded, 

d = ol,+aa,+ .... p” = po+Eppl+ .... (2.5b) 

and for definiteness d, p” will be taken to be real so that our concern is with the neutrally 
stable situation or travelling-wave disturbance. An extension of the analysis to yield 
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growth rates instead can be readily made. The basic flow is given by ( 2 . 4 ~ )  in I and so 
has the forms 

( 2 . 5 ~ )  

( 2 . 6 ~ )  

(2.6b) 
~ ( 1 )  = iD1) - iaoBl A([ + Z) - i a , ~ , ~ , 5 ( f ;  for + 25 'E > In O ,  6) ; 1 u(0) = AA,, W(0) = -iaoAoA(f;+c"); 

6 ,  = aoP,/3,1[1 -exp (-mZ)], 5, = ia;P,P,l[m-l-Z-rn-lexp ( - m Z ) ] ;  ( 2 . 6 ~ )  

13, = P,exp(-a,$), O, = - i P o e x p ( - a o ~ )  (m z p k e - f f n )  (2.6d) 

Here A,, Po are constants representing the disturbance displacement and pressure 
amplitudes, EA = ,80/ao = co is the scaled wave speed, f ;  = f - Z ,  and the constants 
A,, f i ( I ) ,  2, can be taken to be real without loss of generality. The appearance of the 
final logarithmic term in (2.6b), owing tfo the profile curvature effect A,(x) of (2.4b), is 
vital since i t  forces the smoothing out in the viscous critical layer I11 surrounding 
f ;  = 0, Y = Y, = c". Classical linear theory (Lin 1955; Stuart 1963) shows that a phase 
shift of - 7~ results there (cf. 9 3), so that (2.6b) holds below the critical layer provided 
we replace lnf; (for [ > 0) by In I f ; \  -in (for f ;  c 0) .  For later reference we note that, 
in 111, y = e7yc + &Y1, with Yl of O( l), i.e. f ;  = &Yl, and 

(2.7) 

i 
[BA P + € 2 ~ ~  P2 + . . . , 0(e8)1 in 11, 

( U ,  V )  = [e2AZ + O(e4), O(slO)] in IV, 
[1,0]+O(e6) inV. 

0 ,  

i 
Substitution of (2 .5~-c )  into (2.1) produces the successive disturbance solutions 

tho  = AoUBy, W, = -iuoA0Ug, po  = pc0) = P * 

- -  

= E [ { ~  2 (0) I ~ = ~ ~ + ~ B ~ ~ ) I ~ = ~ ~ Y ~ + ~ ~ ~ ( ~ ) I ~ = ~ ~ + ~ ~ ~ ~ ~ ) +  . . . I + ~ . ~ .  

from (2.5a), (2.6a, b ) .  Here the function V(Yl) exhibits logarithmic behaviour only as 
Yl + k co, and the solution of the Airy equation governing a2p/aY; leads to the phase 
shift of - n (cf. $9 3-5). Matching u, v ,p  between zones 11, TV and between I, V, together 
with the momentum balance in zone 11, then requires the relations 

(2.8a, b, c) 

in turn. So the real parts of (2.8a) give 

2A2a0A,c"%7 = -agP0(2/3i)-8; (2.9) 

the imaginary parts only fix a first relation between the next-order terms al, p1 of 
( 2 . 5 b ) .  Therefore (2 .8b ,  c), (2.9) fix ao, Po and c,, and we obtain the expressions 

A>: AB hQ 
a. = , co = 

29( - "A,)+ ' = 2( -"A,)% 26( - "A,)) 
(2.10a) 

for the reduced wavenumber, frequency and wave speed of a neutrally stable distur- 
bance. The corresponding unsealed quantities (i.e. in terms of x, t rather than X, 7) are 

a = e-5a0, p = e-4po, c = ECO' (2.10b) 
to leading order. 

The criterion (2.10a) agrees with the classical linear results (e.g. in Reid 1965; 
Drazin &, Reid 1980), and it verifies the importance of the profile-curvature effect A, 
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through its controlling of the phase jump --IT. Again, because of the derivation of 
(2.1Oa) the necessity of the pressure-displacement balancing throughout the whole 
disturbance structure is re-emphasized. An added advantage of the systematic 
approach is that indefinitely many further terms in the expansions follow in principle 
from the pattern established above. I n  particular, non-parallel-flow effects would 
emerge as relative corrections of order e5 a t  least and are probably even greater than 
that, from an analogy with Bodonyi & Smith's (1981) conclusions on the Blasius case. 

The stability theory and structure above for the infinitesimal disturbance of (2.3) 
lay the foundation for what follows. For next we wish to consider significantly bigger 
disturbances. It is found that linear theory continues to hold good to leading order 
provided the disturbance size 6 remains less than s8( = Re-A) ,  but when S reaches 
O(&) a significant new feature comes into play.'This is the influence of nonlinear in- 
teraction in the streamwise momentum balance within the critical layer 111, whereas 
outside IIIno major alteration of the leading-order balances described above is implied. 
Consequently, we move on immediately to the discussion of a disturbance whose size 
6 is O(&).t  

3. Less-small disturbances and the nonlinear critical layer 
The suggestion just made requires that we reconsider the Navier-Stokes equations 

with 6 of order &. Since the significant changes in balance are found to occur only 
within the critical layer I11 we concentrate mainly on that layer and outside it present 
only the slightly altered forms of zones 11, IV  where the effects produced are typical 
of those outside the critical layer. 

3.1. Outside the critical layer 

Henceforth, periodic travelling-wave solutions are sought dependent only on 
2 _= ( X - C S - ~ T )  and the appropriately scaled y ,  rather than on S, r and scaled y ,  
implying that our concern again lies in tracing the development of the neutral con- 
dition but with the disturbance size varying through the current O(e8) stage. Here the 
wavenumber a is kept fixed, a t  order c5 (cf. (2.10b)) for definiteness. So the object 
becomes to find the position x and wave speed c = €2 (cf. (2.lOb)) a t  which a distur- 
bance of size O(&) and given wavenumber a is neutrally stable (although the study 
could equally well be conducted for a fixed frequency disturbance and that would 
yield the same neutra.1 stability criteria). Here the rather complicated balances 
governing the stability properties re-assert themselves. Thus in 8 2 the relative error 
in the neutral criteria ( 2 . 1 0 ~ )  is O(e) (see (2 .515)) ;  therefore the neutral position x is 
determined only to within O(e) by ( 2 . 1 0 ~ ) .  Accordingly the skin friction h and the 
curvature A, have to be expanded in terms of e to enable the disturbance of wave- 
number a to be maintained in the neutral state. Conversely, a slow growth of the 
disturbance could be accommodated by a multiple scales approach with a/aX being 

t The nonlinear critical-layer effect is then much stronger than the effect (cc (ampl i t~de)~)  of 
weakly nonlinear stability theory (Stuart 1960; Watson 1960; Pekeris & Shkoller 1967 ; Reynolds 
& Potter 1967). For the first effect produces a significant change (see 1 5  below) in the neutral 
stability curve compared with linear theory, whereas the second effect strictly produces only 
a small change. Thetwo effects arc comparable (and weak) only for distances much smaller than 
O(S8).  
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replaced by a/aZ+ B a/t?x’+ . . . , say, where the slow co-ordinate x governs the 
amplitude modulation, and the wavenumber could be considered slightly displaced 
from its unknown neutral condition. However, let us establish what the new neutral 
state actually is now, in the spirit of the studies by Benney & Bergeron (1969), Haber- 
man (1972), Brown & Stewartson (1978) and others, leaving consideration of modu- 
lations from that state until later. Following the above comments we are led to the 
expressions 

} ( 3 . l a )  
cc = e-5a0, c = €C0+€2C1+ ..., x = xo +€XI+ ..., 
h = A“ + €h(1) + . . . , A, = h p  + € A p  + . . ., ri, = up + €up + . . . 

governing neutral stability, where, for given cco, the constants ci, x,, A(’), A t )  are to be 
found. The skin-friction and curvature coefficients h(J), hi1) (Aho) < 0) depend only on 
the values of x, in fact, from the prescribed boundary-layer profile UB(x, Y ) ,  which is 
also expressed in expanded form in (3.1 a) .  All quantities here and below are real. 

The flow solution in zone I1 may be considered first. There, with S = O(&) the 
expansions for the total velocity and pressure are 

u = shF+s2hz FZ+&(O)(X, F)+€%u~*F(P)+€13~11(1)(a, F)+  ..., 
a = E-3~p)(z, p) + el*- .l d 1 )(X, F) + ..., 
1, = €133730)( %, f )  + €Yp)(Z, F) + . . . , 

(3 . lb )  

( 3 . 1 ~ )  

( 3 . l d )  

mainly in view of (2.2), ( 2 . 5 ~ ) .  Also, however, ( 3 . 1 ~ )  holds, while the mean flow cor- 
rection uMF( F) is included in anticipation of the critical-layer correction below. This 
mean-flow correction has no effect on the major disturbance contributions. Prom the 
Navier-Stokes equations the solution satisfying the tangential-flow constraint as 
F + o +  is 

u(0) = 2 h ( 0 ) ~ ~ c o s a ~ Z ,  d o )  = 2ao~(o)dOFsincc,X, ~ ( 0 )  = 2 ~ ~ c o s a , X .  ( 3 . 2 ~ )  
- 

Here the unknown constants A,, Po are related by the pressure-displacement rule 

h(0)coAo = Po, (3.2b) 

akin to (2.8c), from the momentum balance. Similarly we find, in keeping with (2.6b), 
the next-order forms 

u(1) = 4h. jo)A0((+~In5+~) cosa ,X+h(~)a(Z) ,  

~ ( 1 )  = 2h40’a0~,((2+ 2~51n[-~2)sinct,X ----~(o)(u‘(X) 
( 3 . 2 ~ )  I - 

1 ajP’ 
A@) 83 

- 2a0Aoc1 sin aOZ, 
a p / a F  = 0, 

for 5 > 0, where ( = P - K and K = c0/A(O). The additional displacement - a ( z )  and 
pressure jP) are unknown functions of 2, but in view of the periodicity requirement 
they are expressible as Fourier series 

41 

a($) = c {a, cos naOS + 6, sin ncco3>, 
n=O 

(3.2d) 
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The continuation, below the critical layer I11 (at ( = 0, P = K ) ,  of the solutions in 
( 3 . 2 ~ )  requires an examination of the critical-layer properties. Prior to that we note 
that the zones I, V (as in $ 2 )  reproduce only linear disturbance properties, in a similar 
vein to ( 3 . 2 ~ ) )  and so yield the pressure-displacement relations 

Po = aoAo, 17, = aoa"l) 

pn = naoa,, 17, = na,a", for n = 2 , 3 , 4 ,  ... 
akin to (2.8b)) for the Fourier components of (3 .2a)c)d) .  The forcing terms in the 
pl-a, relation here arise from interactions like those of Bodonyi & Smith (1981) and 
from the uncertainty in x in ( 3 . 1 ~ ) .  The terms with n = 0 either give only a small 
mean-flow correction or are irrelevant. 

3.2. The nonlinear critical layer 

The critical-layer expansions, implied mainly by (3.1 a-d), ( 3 . 2 ~ - c ) ,  are now 
- 
u = €Go + €g-hc0)Yl + €'[h(')K + hi0)K2] + &$-hco)ki0 COS aog + €+[A(') + 2KhJ0)] 

+ G [ A ( ~ ) K  + h$1)~2] + &'3' In (c) A$) cos aoX + s W , ( X ' ,  .I71 + . . . , ( 3 . 3 ~ )  

v = 2~As3a0A0c,sina021+ 2 ~ 5 ~ , h ~ ~ ~ ~ , ~ ~ s i n ~ , X + ~ ~ ~ v ~ ~ ~ ~ ~ ~ ~ + ~ ~ ~ ~ ~ ~ ( ~ )  

+ In (€1 A ~ ~ ~ K ~ , A , Y ~  sin aoX + e6c(X,  P) + . . . , (3.36) 

(3.3c) 9 = 2€'3'P0 COS (aog)  €'s*flc(x) f S5p1(X, p) + . . ., 
where Yl is O( 1)  : y = € 7 ~  + s'3'Yl. The additional terms of order 83' in 5 and &* in jj here 
are higher harmonics induced by the added nonlinearity of the disturbance. Indeed, 
the first non-trivial balances resulting from substitution of ( 3 . 3 ~ - c )  into the Navier- 
Stokes equations give the solutions 

p c ( X )  = 2Fcos(2aoX),  E J X )  = 2 h(o)a,A~+=$~ sin2aoX. (3.4) 
2a! 'I 

Here 17 is an undetermined constant. The next non-trivial balances then yield the main 
equations of the nonlinear critical layer, 

aD1/a21 + aq/ayl = 0) ( 3 . 5 ~ )  

(3.5b) 

(3.5c) 

governing 0,) c, pl. The asymptotic conditions expected are 

0, N h ~ ~ ~ Y ~ + i i + Y l + ~ h ~ o ~ ~ A o ~ ~ s ~ ~ O I F ~ I n ~ ~ l ~ + O + ~ X ~  as Y~-+OO,  ( 3 . 6 ~ )  

0, N h ~ o ~ I ' ~ + ~ ~ Y l + 4 h ~ o ~ ~ A o c o s ( a o ~ ) l n  lYII +O-(lF) as Yl +-a, (3 .6b )  

where 1, are unknown constants. Here the contributions proportional to I'; and In 3; 
effect the match with the basic curvature term (see (2.4b), (3.1 a ) )  and the logarit,hm 
occurring in the fundamental disturbance (3.26), as F+ K+ in zone 11. The mme 
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logarithm is expected to arise to arise as f -+ K - but with K - I' replacing I' - K .  The 
other contributions, O(Y,), O( l ) ,  are unknown but they reflect the twofold effect of the 
critical layer and follow from Brown & Stewartson's (1978) modification of the con- 
ditions proposed by Benney & Bergeron (1969) and Haberman (1972). First the O(Yl) 
terms give a jump x, - 1- in the mean vorticity aOl/aY,, and hence a non-zero mean- 
flow correction of order 6 in ;II in zone I1 outside, as anticipated by (3.1 b). Therefore 
uBIF( f )  in (3.1 b) must satisfy the constraint 

although it has no interactive effect on the dominant fundamentals (3.2a, b). For 
convenience it is supposed that uRIF(~)  = 0, although an origin shift in Y, allows for a 
non-zero value of ubIF(~) .  The mean-flow correction unlF is seen to be smaller than the 
fundamental disturbance @), in (3.1 b) ,  a feature which contrasts with the suggestions 
of Benney & Bergeron (1969), Haberman (1972), Brown & Stewartson (1978) and 
others. This contrast arises because the classically based approach overlooks the 
systematic balancing of the disturbance structure. This balancing requires the funda- 
mental disturbance to be regular a t  the critical layer to leading order (i.e in Go) in 
( 3 . 2 ~ ) )  and to exhibit the logarithmic singularity only a t  the next order (i.e. in dl) in 
(3.2c)),  whereas the classical approach strictly errs by supposing the two orders to be 
identical. Fortunately, the classical and the systematic approaches can be reconciled 
on this and most (but not all) other counts when allowance is made for such aber- 
rations. The second effect of the nonlinear critical layer concerns the O( 1) contributions 
in (3.6a, b ) .  The difference O+ - 0- determines the induced velocity jump which is 
emphasized by Brown & Stewartson (1978), is O(E%') from ( 3 . 3 ~ )  and must be found in 
order to allow the O ( 8 )  inviscid solution ( 3 . 2 ~ )  for Z(l) (and hence W )  in zone I1 to be 
continued below the critical layer. I n  the linear critical layer ( 5  2) for any disturbance 
size 6 less than O ( 6 )  this velocity jump merely involves a phase shift of -7r in the 
logarithm in the fundamental. For the current nonlinear critical layer the velocity 
jump is more complicated, however, and further comments on i t  will be made shortly. 

The transformation 

= cIilx*, yl = ( 2 K A O ) 3  Y* (3.8) 

now yields, from (3.6a-c), (3.6u, b), the nonlinear critical-layer equation and boundary 
conditions 

a3$* a3$* a4$ * 
I.'* a s *  ay*2 ay"3  a y * 4 '  

+ -sinX* = y c -  (3 .9a)  

with, as I'* -+ 5 co, 
&Y*2+2H+Y*+cos(S*)In Y*+ c~:(x*), (3.96) 

(3.9c) & y*' + 2H- I'* + cos (S*) In (Y* I + U: (S*), 
and the requirement of periodicity of 2n in X*. Here 

(3.10a) 

are to be found, or a t  least the jump quantities H+ - H-, U y  - U?,  while 

7;' = h"%C0(2~AO)~ (3.10 b) 
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is an O( 1)  parameter describing effectively the size S of the fundamental disturbance 
relative to the present O(&) scale. The ‘nonlinear’ aspect here is the second term in 
(3 .9a) ,  from the inertial interaction between the leading-order regular fundamental 
(K sin X*) and the influence (oc @$*/a  Y a s )  of the basic flow curvature and the higher- 
order fundamental, When y c  becomes large, the effect of the interaction diminishes, as 
does the disturbance size, so that (3.9a) then tends to Airy’s equation, which produces 
a phase jump of -7r. When y c  is not large the critical-layer effect from ( 3 . 9 ~ - C )  is less 
simple. The problem ( 3 . 9 ~ - c )  is essentially that of Haberman (1972), but with the 
modification, suggested by Brown & Stewartson (1978), that the velocity jump is not 
assumed to be monochromatic. Brown & Stewartson’s (1978) analysis for y c  B 1 
showed that U: - U? does not have a simple wave form in general, a conclusion that 
could also be extracted from Haberman’s (1976) study. Accordingly the concept of a 
phase shift across the critical layer needs to be amended (but not rejected - cf. Brown & 
Stewartson 1978), and some doubts are raised about Haberman’s (1972) numerical 
solution, since a monochromatic velocity jump was assumed. On the other hand, since 
periodicity of 2n in X* is expected, i t  seems justifiable to Fourier-decompose the 
velocity jump as 

U:- U? = (FncosnX*+.&sinnX*), (3.1 1 a)  

where the constants Fn, pn (n 2 0) are unknown. So now if we define the phase jump 
I$ to be 

rn 

n = O  

(3.1 1 h )  

then the value of + has the significance pointed out in 8 3.3. 

3.3. The phase shift 

The velocity jump (3.11 a)  and transformation (3.8) imply that below the critical layer 
the solutions ( 3 . 2 ~ )  continue to hold in zone I1 provided that lnE, a@) are replaced 
as follows for E < 0: 

In[+In151, a@) + C A ( X ) - ~ ~ ~ O ) K A ~ ( U ~ -  U?)/A(o). (3.12) 

Then again, the solution in zone I1 needs to be reconciled with the wall-layer solution 
as 5 + - K ,  f + 0 + . I n  the wall layer IV 

u = €2h(O)Z + e-[ Z c o s ~ o k - e - ~ ~ ~ c o s ~ a O X - ~ 2 ~ ~ ~  2aopo --+ ..., 
P O  

2, = eJ3sCsin ( a , ~  + in) --biz sin a O k -  e-mlzsin ( a O k +  in -m2Z)1 9 24PO+ . . . , I  
P O  

I 

1, = 2€’3’P0 cos a. x + . . . , I 
(3.13) 

as suggested by (2.5a) with (2.2) and S = O(eg), where m, = -m2 = (&Po)),  with 
Po = aoco. The wall layer flow onZy just remains linear, by a relative amount O(sf)  
from (3.13). More comments on this are given in 5 5. Joining of (3.13) with the inviscid 
solution outside therefore demands the condition (as in ( 2 . 8 ~ ~ ) )  

W I ~ = ~ +  = 2 4 c $ ~ , s i n  (aoX+in)  (3.14) 
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for zone 11. From (3.14), (3.2e), with the replacements (3.12) applied in (3.2c), the 
higher harmonic components give only the relations 

( 3 . 1 5 ~ )  

for n =/= 1, which determine the forced higher harmanics in zone I1 and elsewhere out- 
side the critical layer. Likewise, the s ina ,a  components in (3.14) give, from (3.2e), 

which merely sets a first condition on the uncertainty in x and the wave-speed cor- 
rection c1 of (3.1 a).  

By contrast, from the fundamental cos aoa contributions in (3.14) we obtain what 
amounts to a resonance (cf. (3.15a)) or a solvability condition on the dominant 
disturbance amplitude, namely 

( 3 . 1 5 ~ )  

on use of (3.2b, e). Here ( 3 . 1 5 ~ )  leaves the amplitude correctionsp,, @,, a,, a“, remaining 
arbitrary thus far, and serves to illustrate again the balancing of the phase shifts 
PI ( =  q5) and an produced respectively by the critical layer and wall layer. Further, 
from (3.15c), (3.26,e) it follows that the neutral stability criteria ( 2 . 1 0 ~ )  continue to 
hold provided only that - n there is replaced by the new phase shift 4, t,o give 

(3.16) 

The direct step from (2.10a) to (3.16) was anticipated by Haberman (1972), although 
without the explicit determination of the induced higher harmonics of (3.2c, d) ,  
(3.15a), the perturbation in wave speed, the smallness of the mean-flow correction or 
the smallness of the wavenumber. Again, the demonstration above, that  although 
these higher harmonics are of quite significant amplitude they still have no influence 
on the neutral stability properties (3.16), proves very helpful in the theory of part 2. 

3.4. The nqnlinear critical-layer calculation 

Because of the neutral criteria (3.16), and contrary to Brown & Stewartson’s sug- 
gestions, the unknown phase shift q5 of (3.11 b)  remains as the most significant overall 
effect of the nonlinear critical layer. Like the entire critical-layer solution the value 
of 4 depends only on the value of y c  in (3.9a),  although it can be related to the vorticity 
jump by the result 

4 = 4y@+ -f-f-), (3.17) 

of Haberman (1972), which still holds (by double integration of ( 3 . 9 ~ ) )  despite the 
corrected form (3.1 1 a )  of the velocity jump. Therefore only the solution of the problem 
( 3 . 9 ~ - c )  now needs to be determined. 

I n  view of the slight doubts raised earlier about Haberman’s (1972) numerical 
solution, an independent numerical treatment of ( 3 . 9 ~ - c )  was decided upon, I n  
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FIGURE 2. Calculated results for the phase shift q5 (shown by 0) (see (3.11 a ,  b ) )  and the vorticity 
jump 2(H+-  H - )  (shown by x ) from the solution of (3.9a-c) for various values of yc. Also shown 
are the asymptotes for yc -+ O +  (taken from (4 .4b-d) )  and ye -+ co. 
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FIGURE 3. Numerical solutions for the velocity jump U+* - U? of (3 .9~-c )  as functions o f  X *  for 
various values of yc. The velocity jump is odd about X *  = 7r in each case. The result for yc = 00 

stems from the linear theory, which gives the jump -TI sin X* from 2. 

summary, our treatment assumed a Fourier-series solution for a2$*,f8 Yo2, which was 
substituted into ( 3 . 9 ~ )  to yield a coupled infinite set of ordinary differential equations 
for the Fourier coefficients. This set, when truncated, was solved by uniform central 
differencing, iterating and, if necessary, using relaxation. Tests were carried out on the 
effects of the step sizes (typically 0.02 to 0.2) in Y*, of the number of terms (typically 
10-30) retained in the series truncation, and of the iterative convergence test; and as 
a result we believe the results to be satisfactory. After the calculations were done, 
Dr P. Huerre (private communication 1980) kindly informed us that he too had 
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Asymptotes 
(5.1), (5.2) 
For WAVE SP 

\ \-@ / .. ;_For FREQ 

I 

\ '  
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. .  

For WAVE NO . .  
. .  \ / 

\ 
\ 
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t---- _- - 
\ \ 

I \ 
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( 0 )  3 - Relative-disturbance size, A,,'[ X(O)'2& Xz - ] 0 1 

FIGURE 4. The dependence of the neutral wavenumber, wave speed and frequency on the relative 
disturbance size A,. Here WAVE SP stands for 2[8h t )2h(0 ) -5 ]~co .  WAVE NO stands for 
[8h',0)2A(0)-11]t a,, and FREQ stands for [8h',0)2h(0)-8]*P, (see (3.16)). Also shown are the negative 
phase shift - q5 and the variation of ye, versus A,. 

recalculated solutions, and his and our results are in close agreement (see also below). 
The calculated properties of (3.9~~-c) as yc  varies are summarized in figure 2, which 
shows the dependence of the phase shift $ and vorticity jump 2(H+ - H-) on y c  and in 
figure 3, which shows the velocity jump of (3.1 1 a). Our results for $ and 2(H+ - H-)  
seem to agree a t  least graphically with Haberman's (1972) calculations, as do Dr 
Huerre's. Further, the approach towards the earlier classical linear results, of zero 
vorticity jump and a phase shift of - n when y c  -+ co, appears to be verified as y c  
increases; the analytical solution for y c  9 1 has been studied by Haberman (1976) and 
Brown & Stewartson (1978), and is in line with our calculated results. Given $ as a 
function of ye,  (3.16) enables the dependence of the neutral wavenumber, wave speed 
and frequency on the relative disturbance size given by A, in (3.10 b)  to be worked out; 
this is presented in figure 4. As the present O(&) disturbance increases in size yc  falls, 
the negative phase shift - $  decreases, and the vorticity jump increases. So the 
neutral wavelength then shortens, the neutral frequency increases, while the critical 
layer a t  f = f, = K is pushed further from the wall, since c,, increases with decreasing 
yc. The solution properties in the limit as y c  -+ 0 are especially worthy of study next 
because the suggestion from the numerical results of figures 2-4 is that this limit 
corresponds to an enhanced size of disturbance, an attractive prospect on both 
physical and analytical grounds. 
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4. The increasingly nonlinear critical layer when yc Q 1 

Although the solution of ( 3 . 9 ~ - c )  for y c  small has been examined already by 
Haberman (1972) and Brown & Stewartson (1978), we present an account here because 
our method and conclusions differ from theirs in a number of respects. Moreover the 
account produces some guidelines for the subsequent work in part 2. 

When y c  is small an expansion of the form 

$* = +o+ Y C $ l + . . .  (4.1) 

is suggested first, for general O(1) values df Y*. From (3.9a), therefore, the viscous 
farces are negligible to leading order in y c  and so 

a2$0/aY*2 = K(7) ,  7 = *Y*2+cosXT*, ( 4 . 2 ~ )  

expressing conservation of the unknown vorticity K(7)  along the main streamlines 
7 = const. of the total flow. These streamlines give the Kelvin cat’s-eye formation, 
and are closed for 7 < 1. So to avoid a singularity arising in the higher-order terms we 
have within the cat’s-eye 

K(7)  = No for 7 < 1 (4.26) 

(the Prandtl-Batchelor theorem), where No is a constant to be determined. Outside 
the eye, for 7 > 1, the vorticity variation is fixed almost uniquely by the next-order 
term €or which the periodicity requirement demands that 

Then integration with respect to 7 and use of the outer constraints (3.9b, c), which 
impose Y*-l K(7)  + 1 for g + co, implies 

K’(7) = * 277 aqv - cos X*)*dX* /r ( 4 . 3 ~ )  

for Y* 3 & 24(l - c o s X * ) i ,  above and below the eye, respectively. Because of the 
discontinuity in the vorticity gradient a t  7 = I +  implied by (4.3a) and (4.2b), thin 
viscous layers are inevitable near 7 = 1,  and these will be discussed shortly. To proceed 
further requires a boundary condition on K(q).  Benney & Bergeron (1969) conjectured 
that the condition could be one of negligible vorticity jump across the critical layer, 
i.e. that the values of K(7)  - Y* as Y* + co should be identical. However, Haberman 
(1972) proposed instead the condition of continuity of the vorticity K ( 7 )  a t  the edges 
of the cat’s eye, 7 = l*, a condition suggested strongly by his and our numerical 
solutions in fact. The matter was then settled by Brown & Stewartson (1978), whose 
study of the thin viscous layers near the edges of the eye (see below, however) proved 
the Haberman (1972) option to the correct one. In consequence, the integration of 
(4.3a) gives 

K(7)  = No+ K ’ ( ~ ) d ~  (4.3b) s: 
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for 7 > 1. So since K'(7) is an odd function of I'* outside the cat's eye from (4.3a), the 
finite parts of (4.3b) as Y* -+ & 00 (7 -+ a) immediately yield the results 

No = H++H- ,  (4.4a) 

to leading order in yc,  from (3.9b, c). Here, for y c  -+ 0, ( 4 . 4 ~ )  predicts the vorticity 
within the cat's eye to be the average of the mean vorticity corrections induced a t  the 
outer extremes of the critical layer, while the limit (4.4b) for the mean vortieity jump 
yields the limiting behaviour 

4 - C(l)yC as y c  -+ 0,  (4.4c) 

from (3.11 6 ) .  The jump formulae (4.4b, c) agree with Haberman's (1972, equations 
(4.24), (4.26)), although we find 

gC(1) = - 1.379 ( 4 . 4 4  

from (4.4b)) in place of his estimate - 1.05; the function L in his (4.15) is not inde- 
pendent of his 6 ;  and the working in his (4.16)-(4.23) needs modification as it assumes 
only part of the complete velocity jump (our (3.1 1 a ) )  as mentioned before. Again, we 
note that knowing the vorticity alone is enough to fix the phase jump (1.4~); the 
velocity is not required. 

The discontinuities in the vorticity gradients K'(7) above near the edges of the eye 
are smoothed out in thin, upper and lower, viscous layers astride 

Y* = f 2 t (  I - cos X * ) t .  

For tlhe upper viscous layer I'* = 24( 1 - cos X * ) t  + ~ $ 2 ,  where x is O( l ) ,  and 

az+*py*2 = ~ , + y % c q s * , x ) +  ..., ( 4 . 5 ~ )  

so that ( 3 . 9 ~ )  yields the equation 

2sinX* an a2Q - -  -- an 
a s *  26( 1 - cos x*)& ax a x 2  

23(1-cosS)t---- (4.5b) 

for !2. The external inviscid solutions ( 4 . 2 ~ )  b )  with (4.3a, b )  then lead t o  the boundary 
conditions 

(4.5c) 

for 0 < X* < 2n, where P2(X*) = Q x 29741 - cosX'*)& from (.1.3a), and 9p  are un- 
known constants. Similar features apply in the lower viscous layer, while a co-ordinate 
transformation of (4.5 b)  yields the heat-conduction equation whose solution, with 
the boundary conditions ( 4 . 5 ~ )  and the requirement of periodicity, was obtained by 
Brown & Stewartson (1978). The following alternative approach produces the major 
part of the velocity jump across the viscous layers more simply, however. 

Integrating (4.5b) with respect to z gives the equation 

(4.6a) 
au* sin X* ( U * - x z )  = -G(X*)+- a w *  
a s *  + 29( 1 - cos X * ) t  a22 

23( 1 - cos 5")t  - 
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for the effective velocity U* -= / a d z ,  where G ( X * )  is an unknown function of X *  
representing the pressure gradient. Similarly, integration of (4.5 c )  suggests that 

( 4 . 6 b )  

if we assume a fast-enough approach of to its asymptotes in ( 4 . 5 ~ ) .  On substitution 
of ( 4 . 6 b )  into ( 4 . 6 ~ )  the expression for 6pz given just after ( 4 . 5 ~ )  is verified, at order z2 
in ( 4 . 6 ~ ) ~  the constancy of 9; is verified a t  order x ,  while the zeroth-order terms 
yield the equation 

U* N ~ ( X * ) z ~ + 9 1 + z + d p o f ( X * )  as z -+ +a, 
u* - Z1-2 +Poo- ( X * )  as z - + - c o ,  

d 
ax* - [23(1 -cosX*)t (Zo+ - 9 0 - ) ]  = 2%(X*) ( 4 . 6 ~ )  

for Po+ -Po-. Hence, expecting an odd dependence on X* - n, we obtain 

Zo+ -To- = - 477 cot gx*, ( 4 . 6 d )  

which determines the effective velocity jump go+ -Po-. The same jump occurs across 
the lower viscous layer, and so the jump of the velocity a@*/aY* across the two 
viscous layers is 4 

- y c n  cot *X*,  ( 4 . 7 )  

to leading order, in view of ( 4 . 5 ~ ) .  
The prediction (4 .7 )  is now supported by Brown & Stewartson's (1980 b )  amendments 

of their (1978) formula (3.30), following a correspondence between the last-named 
authors and ourselves. Three final points on the nonlinear critical-layer solution for 
small y c  seem worth making. Firstly, there is the simplicity of the argument in ( 4 . 6 ~ ~ ) -  
( 4 . 7 ) .  It gives the dominant part of the velocity jump everywhere, except in thin 
O(yi)  regions near X* = 0,27r; the more involved Brown-Stewartson approach is only 
necessary if the next-order correction is sought. The present argument proves crucial 
for the new, strongly nonlinear, critical-layer structure described in $ 5  and to be 
examined in part 2. Secondly, and in consequence, the relative errors in the formulae 
( 4 . 4 b , c ) ,  (4 .7 )  are of order y i .  Thirdly, the phase shift associated with the viscous 
velocity jump (4 .7 )  alone is - 2 y c n  (or -yen across each of the viscous layers), by 
formal analogy with (3.11b), and this provides only part of the total phase shift of 
( 4 . 4 ~ ) .  The remainder comes from the inviscid zone outside the cat's eye. For integration 
of a2@l/a Y *2, with respect to Y * from Y* = 23( 1 - cos X*)Q to Y*, to give the velocity, 
followed by multiplication by 7r-l sin X*, integration with respect to X *  from X *  = 0 
to X* = 2n, interchanging the orders of integration in the resultant triple integral and 
taking the limit Y* -+ co, gives a phase shift of yC(&Y) +n) through the upper inviscid 
zone, on use of ( 4 . 3 ~ ) .  The same phase shift is induced through the lower inviscid zone. 
Since the phase shift across the inviscid eye is zero to order y c ,  the total phase shift of 
( 4 . 4 ~ )  is therefore recovered. 

Comparisons between the predictions (4 .4b-d)  for y c  --f 0 and the calculated 
solutions of $ 3  are given in figures 2 ,  3, and, bearing in mind the O(y i )  relative error, 
we believe confidence in those predictions to be not unreasonable. The implications of 
the predictions as far as the influence of disturbance size is concerned will be considered 
next. 

. 
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5. The implications for bigger disturbances 
From ( 4 . 4 ~ )  and (3.16) the behaviours 

are predicted when yc  -+ 0. Comparisons between (5.1) and the full solution of the 
nonlinear critical layer are given in figures 2 ,  3; and again some support for (4.4c, d )  
as well as (5.1) is thereby provided. Equally important is the asymptotic form 

implied by (4.4c), (5.1) and the definition (3.10b). This confirms the expected increase 
of disturbance size corresponding to decreasing yc,  since essentially A ,  denotes the 
amplitude, relative to the current O(&) size of scale, of the fundamental disturbance in 
zones 11, IV, by (3.16), (3.2a),  (3.3a) and (3.13), while (5.1) shows that simultaneously 
the wavelength and wave speed respectively decrease and increase sharply. Therefore, 
as the effective disturbance size S = A,& is increased indefinitely during the current 
stage (S = O(aa)), the whole neutrally stable structure shrinks because the lateral 
extent of the outermost zone V of potential flow is also proportional to acl. Eventually 
then, for S 9 sf, A ,  $ 1, a new structure must come into operation beyond the current 
stage. The conclusion we draw from the behaviours (5.1), ( 5 . 2 )  is that the new structure 
will probably appear when the disturbance size S rises to O(s2 = Re-*). For then 
formally A ,  must rise to s-i, and so yc  falls to O(e3) from (5.2), leading to increases of 
both a, and c, to O(e)  from (5.1).  In  view of (3.1a), which with (5.1) gives the unsealed 
wavenumber and wave speed of the neutral disturbance, the wavelength would 
become O(s6) = O(Re-4) then, and the wave speed would reach O( l ) ,  so that the critical 
layer is pushed toward an O(Re-3) distance from the wall. At that stage the funda- 
mental assumptions of the present work become invalid, of course, owing to the new 
positioning of the critical layer in the midst of the boundary layer, as well as the equal 
importance to be set upon lateral and streamwise variations of the fundamental 
disturbance in the main boundary layer as the outer potential-flow zone becomes 
coincident with it. In  other words, when S is increased to O(Re-f) we approach exactly 
the classical Rayleigh scalings where the majority of the inviscid characteristics of the 
disturbance are controlled over length scales comparable with the typical lateral scale 
of the basic flow (figure 5 ) .  

In  some ways it is comforting to find these more readily understandable classical 
scalings emerging as we increase the disturbance size 6 from its previous rather bizarre 
order Re-s%- to the suggested new order Re-f. However, since this new order is R-4, 
where R ( =  O(Re3)) is the Reynolds number based on the boundary-layer thickness, 
we produce a condition significantly diflerent from the classically based one (e.g. 
Benney & Bergeron 1969; Haberman 1972) that S be O(R-3) for a nonlinear critical 
layer on the Rayleigh scalings. There are some other features indicated that may also 
cause certain reservations about classically based approaches. Thus, for example, 
before the classically based stage S = O(Re-4) is reached, the stage S = O(Re-&) that 
produces the classical nonlinear critical-layer balance of (3.9 a) has already been passed 
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FIGURE 5 .  Sketch (not to scale) of the relatively compressed structure induced by a travelling- 
wave disturbance of increased amplitude 8 = O(Re-i)  in a boundary-layer or channel flow with 
velocity profile U,,( Y ) ,  according to the inferences drawn in $5. The form here is to be compared 
with the form of figure 1 holding for smaller disturbances. 

through. Again, it can be seen from (3.3a-c) that within the critical layer the lateral 
pressure gradient al,/aY* contains some contributions G, say (from - 0, aR/ax for 
instance), proportional to ~ ~ A i a ;  and of order el2. While those contributions are 
negligible in the dominant balance ( 3 . 5 b , c )  of the nonlinear critical layer of QQ3-4, 
they cannot be so neglected when 6 is increased to order Re- i ,  as the dependence on 
K ~ A ~ U ;  then increases G to order @, from (5.1), (5 .2 ) .  This coincides with the order e6 
implied for the pressure p due to the O(yc)  perturbation of PI in (3 .8 )  when the asymp- 
totics of $4 are applied, by use of (3 .3c ) ,  (3 .8 )  and (5.1), ( 5 . 2 ) .  As a consequence, 
precisely when the classical stage of disturbance is reached, the classical assumption 
of the pressure force being dependent only on the streamwise location becomes invalid 
within the critical-layer balance. Now consider the wall layer IV. There, the funda- 
mental disturbance in the total velocity ;EE of (3 .13)  is generally a small fraction 
O(a; A,,Pil) of the basic flow velocity. However, from (5.1), (5.2) this fraction will 
become O(1) as we increase A,, to O ( d )  in line with the increase of S to O(Re-4). Hence 
nonlinearity within the wall layer seems inevitable when we reach the classical 
Rayleigh stage. Furthermore, the effective wall shear stress aE/aY(x, 0) due to the 
basic flow is O( 1) throughout, whereas that of the fundamental is O(&t A&$) from 
(3 .13) ,  (3 .2e) .  Hince (5.1), ( 5 . 2 )  show formally that the approach to the new size 
S = OfRe-i)  causes the contribution of the fundamental to exceed greatly that of the 
basic flow, and near the wall a predominantly oscillatory motion, including flow 
reversal, is indicated. All the features just described tend to be overlooked in the 
classically based approach, and raise questions about the correct nonlinear structure 
of the disturbed flow, especially the necessarily novel form to be acquired by the non- 
linear critical layer, when the disturbance size is increased to O(Re-4) or O(R-4). These 
questions will be addressed in part 2. 

Meanwhile, a final comment on the present study seems appropriate. Throughout, 
our objective has been quite specific: to follow the dependence of the neutral stability 
criterion, along the upper branch, on the size of the mainly monochromatic disturbance 
imposed, and to find the corresponding balance or structure controlling the neutral 
disturbance. It has also been limited to an attached boundary layer as the basic flow. 
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Nevertheless, i t  seems not unreasonable to hope that as a consequence many more 
physically significant aspects of the stability of streaming flows may prove analysable 
along rational lines. Certainly, the structural approach used seems to help to emphasize 
the delicacy of the stability properties. In  particular, it unveils an abrupt change in 
structure and scale as the disturbance size increases just slightly, from O(Re-ixc) to 
O( Re-s'i), whereas for smaller disturbances virtually no change occurs. Similar features, 
including the abrupt change, are almost certain to arise in other streaming flows such 
as the Blasius boundary layer and plane Poiseuille flow as the disturbance size is 
increased to O(Re-*). It would be interesting if such an abrupt change in the neutral 
stability criterion, together with the resulting vast expansion implied in the region of 
instability in the (a ,  R)- or (p, R)-plane, is or could be related to the actual behaviour 
of, say, a spatially growing disturbance as its amplitude passes through the above 
sizes. A treatment assuming a small departure from the neutral conditions and balances 
established above and correspondingly slow modulahion of the amplitude seems 
eminently possible then, if instability is encountered close to those conditions, as we 
would presume. This possibility was anticipated in fact in the second paragraph of 8 3, 
and by the appearance of the perturbation wave speed c1 in the balance (3.14) that 
fixes the neutral stability criterion. Again, Benney & Bergeron's (19G9) discussions 
offer some hope for the study of imposed modes more complicated than our single two- 
dimensional wave. On the other hand, Stewartson's (1978) examination of some not- 
unrelated critical-layer properties strongly suggests that  in the more realistic context 
of an initial-value problem the temporal development of a disturbance may cause 
significant departures from the ultimate periodic state assumed here. Finally, the 
relationship between the present prediction of an order R-9 disturbance size governing 
the Rayleigh situation and the classical prediction of R-% could prove interesting when 
other basic flows (e.g. decelerating boundary layers or shear layers) more unstable 
than those mentioned above are considered. 

The authors are grateful to Dr S. N. Brown for some discussion on her and the present 
work. 
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